#### Softening the Blow

U.S. State-Level Banking Deregulation and Sectoral Reallocation after the China Trade Shock

Mathias Hoffmann & Lilia Khabibulina

University of Zurich

GEPG meeting, Nürnberg 19 July 2023

#### Background

► COVID 19 & the energy transition as a major reallocation shock, permanently changing the relative importance of entire sectors in the economy.

► What role does access to finance play in dealing with such asymmetric reallocation shocks in a monetary union?

► This paper: Examine role of banking integration for for sectoral reallocation after the China Trade Shock (CTS) in the United States in the late 1990s and early 2000s.

# Banking integration in the United States: a state-level laboratory

- Until the late 1970s, interstate banking was barred in most federal states.
- ▶ U.S. state-level banking deregulation during the 1980s allowed the creation of banks that were integrated across state-borders, operating internal capital markets to lend to firms and consumers in other states.
- Deregulation took place at different times in different states —> interesting variation to exploit
- ▶ Deregulation left a long shadow: early-deregulated states are effectively financially more integrated with the rest of the US than late deregulators even more than a decade later (Hoffmann and Stewen (JEEA 2020), Mian, Sufi and Verner (JF 2019))

#### Geography of U.S. state-level banking deregulation



Source: Kroszner & Strahan QJE 1999

#### The China Trade Shock (Autor, Dorn, Hansen 2013)



Source: https://chinashock.info/

Location-specific import exposure:

$$\Delta \text{IE}_{ut}^{l} = \sum_{i} \frac{L_{it-1}^{l}}{L_{t-1}^{l}} \cdot \frac{\Delta IM_{ucit}}{L_{uit-1}}$$

- $\Delta IM_{ucit}$ : 1990-2007 change in U.S. imports from China in industry i
- $L_{uit-1}$ : U.S. wide employment in industry i
- $\frac{l_{it-1}^l}{l_{t-1}^l}$ : share of industry i in total employment of location I

#### Our story

- China Trade Shock ("CTS") was a major terms of trade shock to U.S. with considerable variation in exposure across local economies (states, CZs)
- ► Financially more open states (those that had liberalized earlier in the 1980s) coped better with this shock after mid-1990s. Local economies in such states saw ...
  - smaller declines in housing prices.
  - smaller declines in wages, income and aggregate employment
  - swifter reallocation of employment from exposed manufacturing towards non-tradeable and service sector
  - More stable consumption, but also higher credit growth

Earlier literature: role of banking liberalization for credit supply.

Our focus here: financial integration helps cushion the fallout from a major shock to credit demand

### Banking deregulation and long-term effects of the CTS



Import exposure and key macro outcomes in early/late deregulation states

#### A simple model: firms

We consider a currency union with many local economies, l = 1, ..., L, each producing goods in the tradable (manufacturing: M) and housing (H) sectors:

$$Y_{M,t} = A_M N_{M,t}^{\alpha}$$

The stock of housing evolves according to

$$H_t = (1 - \delta)H_{t-1} + Y_{H,t}$$

and gross housing investment is

$$Y_{H,t} = A_H N_{H,t}^{\eta}$$

Labor is mobile between sectors, so wages equalize.

#### Model: households

Households maximize

$$U_0 = \mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left( \frac{X_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\nu}}{1+\nu} \right) \right\}$$

where

$$X_{t} = \left[ \gamma^{\frac{1}{\theta}} C_{t}^{\frac{\theta-1}{\theta}} + (1-\gamma)^{\frac{1}{\theta}} H_{t}^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}$$

is CES-bundle of traded consumption goods and housing services

#### Model: tradable consumption and the terms of trade

Tradable consumption consists of imported and locally produced imported goods:

$$C_{t} = \left[ \varphi^{\frac{1}{\theta}} C_{M,t}^{\frac{\theta-1}{\theta}} + (1 - \varphi)^{\frac{1}{\theta}} C_{l,t}^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}$$

and the associated price index is

$$P_{C,t} = \left[\varphi P_{M,t}^{1-\vartheta} + (1-\varphi) P_{l,t}^{1-\vartheta}\right]^{\frac{1}{1-\vartheta}}$$

Normalizing  $P_{l,t} = 1$ , we can think of  $P_{M,t}$  as the terms of trade.

Increased import competition =  $P_{M,t} \downarrow$ 

#### Model: banking sector and financial openness

We consider a risk neutral bank that maximizes profit under a Value-at-Risk (VaR) constraint. The bank captures funds at rate  $r^*$  in the US wide money/deposit market and intermediates them to local economies.

The FOC of the bank then implies that leverage is given by

$$\frac{L}{E} = \frac{1 + r^*}{\Phi \sigma_n - (r^e - r^*)}$$

where *L* is lending, *E* bank equity,  $r^e$  is the bank's expected portfolio return and  $\sigma_n$  its standard deviation.  $\Phi$  is the distance to default.

We assume that  $\sigma_n = \frac{\sigma}{\sqrt{n}}$  where n is the number of locations in which the bank is active. An increase in  $r^e$  due to a positive credit demand shock changes bank lending as

$$\frac{dL/L}{dr^e} = \frac{1}{\Phi\sigma_n - (r_t^e - r^*)}$$

Hence, a more diversified bank (higher n) will be more elastic in its lending response!

## Closing the small open-economy model

Assume that the bank is active in n equally sized local markets, so that L = nB. Then

$$r^{e}(n) = r^* + \frac{\Phi\sigma}{\sqrt{n}} - \frac{E(1+r^*)}{nB}$$

And log-linearizing around B and  $r^e$  we obtain for local interest rates and lending

$$r_t^l = r^e(n) + \frac{E(1+r^*)}{nB} \times \frac{B_t^l - B}{B} = r^* + \frac{\Phi\sigma}{\sqrt{n}} + \omega \times \left[exp\left(\frac{B_t^l}{B} - 1\right) - 1\right]$$

where

$$\omega = \omega(l) =$$
 1/elasticity of credit supply in location  $l$ 

and the lending supply elasticity of the bank is increasing in its geographical diversification, *n*.

Think: early-deregulated states have low  $\omega$  (high n), late-deregulated states high  $\omega$  (low n).

#### **Model Predictions**



Impulse responses of key variables

#### **Empirical Analysis: Data**

- County Business Patterns, U.S. Census Bureau: annual payroll, number of employees, and number of establishments by county and industry
- ► Regional Economic Accounts, U.S. Bureau of Economic Analysis: Personal income, consumption, population
- Import data by manufacturing sector from ADH 2013.
- House prices from FHFA (county, czone) and Lincoln Institute of Land Policy (state).
- ▶ Data on mortgage applications and mortgage refinancing and equity withdrawal by bank and county aggregated from HMDA.

# Empirical Analysis: Measuring (state-level) financial openness

DI = 1995 - Year of banking liberalization in state s

- Liberalization usually happened on a reciprocal basis
- Hence, more time elapsed since libearlization gives home banks more time to establish themselves in other states...
- ... and out-of-state banks a longer time to build up a presence in state s.
- Empirically, early-liberalized states have higher presence of "integrated" banks (see Hoffmann & Stewen, JEEA 2020)).
- Advantage: DI clearly pre-determined w.r.t to China shock from the mid-1990.s Conditional on controlling for pre-1997 characteristics, should be exogenous.
- ... but DI still only varies at state-level in our CZ-level regs.

#### State-level results: dynamic responses

$$\ln Y_{t+h}^l - \ln Y_t^l = \beta_h \Delta i E_t^l + \alpha^l + \tau_t + \epsilon_{t+h}^l$$



#### LLPs of state-level outcomes

## CZ-level results: long-term ("decadal") regressions

$$\overline{\Delta Y}_d^l = \beta \overline{\Delta \text{ie}}_d^l + \delta \overline{\Delta \text{ie}}_d^l \times \text{dis}^{(l)} + \text{controls} + \alpha^l + \tau_d + \varepsilon_{t+h}^l$$

where d stands in turn for the two periods 1991-2000 and 2001-2007.

| Dependent variable: period-average change in           |                      |                      |                          |                        |                         |                     |                     |                      |                      |                      |                    |                    |
|--------------------------------------------------------|----------------------|----------------------|--------------------------|------------------------|-------------------------|---------------------|---------------------|----------------------|----------------------|----------------------|--------------------|--------------------|
|                                                        | log house price      |                      | manufacturing emp. share |                        | non-tradable emp. share |                     | log wages           |                      | log employment       |                      | log income         |                    |
|                                                        | (1)                  | (2)                  | (3)                      | (4)                    | (5)                     | (6)                 | (7)                 | (8)                  | (9)                  | (10)                 | (11)               | (12)               |
| $\overline{\Delta \text{IE}}_d^l$                      | -0.2935***           | -0.2507***           | -0.0353                  | -0.0001                | -0.0209                 | -0.0401*            | -0.0336***          | -0.0226**            | -0.0472**            | -0.0319              | -0.0270**          | -0.0158            |
|                                                        | (-4.979)             | (-3.832)             | (-1.229)                 | (-0.0041)              | (-0.8673)               | (-1.773)            | (-4.592)            | (-2.405)             | (-2.434)             | (-1.539)             | (-2.206)           | (-1.269)           |
| $\mathrm{DI} \times \overline{\Delta \mathrm{IE}}_d^l$ | 0.0217***<br>(2.929) | 0.0200***<br>(3.023) | -0.0042*<br>(-1.819)     | -0.0041***<br>(-2.876) | 0.0036*<br>(1.893)      | 0.0035**<br>(2.491) | 0.0020**<br>(2.429) | 0.0018***<br>(2.856) | 0.0045***<br>(3.812) | 0.0040***<br>(3.787) | 0.0015*<br>(1.781) | 0.0016*<br>(2.178) |
| $\mathbf{PRE91}^l \times \overline{\Delta 1E}_d^l$     |                      | Yes                  |                          | Yes                    |                         | Yes                 |                     | Yes                  |                      | Yes                  |                    | Yes                |
| Fixed-effects                                          |                      |                      |                          |                        |                         |                     |                     |                      |                      |                      |                    |                    |
| czone<br>year                                          | Yes<br>Yes           | Yes<br>Yes           | Yes<br>Yes               | Yes<br>Yes             | Yes<br>Yes              | Yes<br>Yes          | Yes<br>Yes          | Yes<br>Yes           | Yes<br>Yes           | Yes<br>Yes           | Yes<br>Yes         | Yes<br>Yes         |
| Fit statistics                                         |                      |                      |                          |                        |                         |                     |                     |                      |                      |                      |                    |                    |
| Observations                                           | 1,294                | 1,294                | 1,436                    | 1,436                  | 1,436                   | 1,436               | 1,436               | 1,436                | 1,436                | 1,436                | 1,436              | 1,436              |
| R <sup>2</sup><br>Within R <sup>2</sup>                | 0.65220<br>0.34154   | 0.68160<br>0.39719   | 0.97758<br>0.04622       | 0.98018<br>0.15669     | 0.97584<br>0.02403      | 0.97804<br>0.11294  | 0.77475<br>0.15709  | 0.80331<br>0.26398   | 0.75611<br>0.08630   | 0.76561<br>0.12190   | 0.48317<br>0.02490 | 0.4992             |

### CZ-level results: annual panel regressions

$$\Delta Y_{t+1}^l = \beta \Delta \mathbf{i} \mathbf{E}_t^l + \delta \Delta \mathbf{i} \mathbf{E}_t^l \times \mathbf{D} \mathbf{I}^{s(l)} + \text{CONTROLS} + \alpha^l + \tau_t + \nu_t^l$$

| Dependent variable: Annual change in                                      |                             |                              |                              |                              |                              |                              |  |  |
|---------------------------------------------------------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|
|                                                                           | log house price (1)         | manufacturing share (2)      | non-tradable share (3)       | log wages (4)                | log employment<br>(5)        | log income<br>(6)            |  |  |
| $\Delta \mathrm{IE}$                                                      | -0.3171***<br>(-3.688)      | -0.0943***<br>(-3.694)       | 0.0643**<br>(2.421)          | 0.0116<br>(0.2302)           | -0.0534<br>(-1.585)          | -0.0187<br>(-0.5383)         |  |  |
| $DI \times \Delta IE$                                                     | 0.0190**<br>(2.431)         | -0.0036**<br>(-2.140)        | 0.0041**<br>(2.271)          | 0.0044<br>(1.273)            | 0.0028<br>(0.8247)           | 0.0036*<br>(1.893)           |  |  |
| PRE91 $\times$ $\Delta$ IE                                                | Yes                         | Yes                          | Yes                          | Yes                          | Yes                          | YES                          |  |  |
| $\mathbf{Aggregate} \times \Delta \mathrm{IE}$                            | Yes                         | Yes                          | Yes                          | Yes                          | Yes                          | YES                          |  |  |
| Fixed-effects                                                             |                             |                              |                              |                              |                              |                              |  |  |
| czone<br>year                                                             | Yes<br>Yes                  | Yes<br>Yes                   | Yes<br>Yes                   | Yes<br>Yes                   | Yes<br>Yes                   | Yes<br>Yes                   |  |  |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup> | 9,963<br>0.28150<br>0.03881 | 11,493<br>0.10062<br>0.00789 | 11,493<br>0.17805<br>0.00444 | 11,493<br>0.14616<br>0.00449 | 11,493<br>0.17813<br>0.00160 | 11,493<br>0.15293<br>0.00458 |  |  |

#### Pre-trends and dynamics of CTS over time

Split sample by early/late deregulation states. Then estimate

$$Y_{t+1}^l = \beta_t \times year_t \times \Delta IE^l + \alpha_l + \tau_t^{s(l)} + \epsilon_t^l$$



### Was the CTS really a credit demand shock?

- Dynamics line up with model predictions. But what's the mechanism?
- Was credit more easily available in early-deregulated states? Why?
- Shed some light on these issues using bank-county level data obtained from the Home Mortgage Disclosure Act Data base (HMDA)
- $\longrightarrow$  show that CTS was a positive credit demand shock, i.e it increased mortgage lending for refinancing and equity withdrawal.
- $\longrightarrow$  Early-liberalized states have larger presence of geographically diversified banks.
- $\longrightarrow$  The more elastic this response, the less house prices declined.

## Intuition: local credit supply and bank's geographic diversification



Lending responses of diversified and local banks

- Early liberalized states have many geographically diversified banks.
- Our simple VaR model of banks implies diversified banks are more elastic in their credit supply in each location (see also Hoffmann and Stewen JEEA (2020)).
- Hence, they provide more lending than local banks in response to a local credit demand shock.

#### First evidence: bank-county level regressions

$$\frac{L_t^{b,c} - L_{t-1}^{b,c}}{L_{t-1}^{b,c}} = \alpha \times \Delta \text{IE}_t^{\mathcal{CZ}(c)} + \delta \times \Delta \text{IE}_t^{\mathcal{CZ}(c)} \times \text{DIV}_{t-1}^b + \text{CONTROLS}$$

#### HMDA data allows us to distinguish between

- a) home purchase and improvement loans  $\longrightarrow$  reflect long-run investment into a durable asset. Likely to be negatively associated with CTS.
- b) refinancing / equity withdrawal loans reflect consumption smoothing, likely positively associated with the CTS.

### Bank-level lending responses

| Dependent Variables:                           | refinancin | ıg & equity v | vithdrawal | purchase & home improvement |          |           |  |
|------------------------------------------------|------------|---------------|------------|-----------------------------|----------|-----------|--|
|                                                | (1)        | (2)           | (3)        | (4)                         | (5)      | (6)       |  |
| Diversification level =                        | county     | czone         | state      | county                      | czone    | state     |  |
| $\Delta 	ext{IE}_t^c$                          | 1.902      | 1.769         | 2.720      | -10.98**                    | -10.81** | -8.839    |  |
|                                                | (0.5153)   | (0.4714)      | (0.6546)   | (-2.159)                    | (-2.083) | (-1.529)  |  |
| $\text{DIV}_{t-1} \times \Delta \text{IE}_t^c$ | 4,243.4    | 2,483.9**     | 875.0***   | 2,986.1                     | 2,076.2  | 806.0*    |  |
|                                                | (1.426)    | (2.422)       | (3.158)    | (0.4703)                    | (0.8172) | (1.890)   |  |
| $\mathrm{DIV}_{t-1}$                           | -893.1***  | -274.2*       | -123.6***  | -1,445.0                    | -323.4   | -178.6*** |  |
|                                                | (-2.602)   | (-1.931)      | (-4.850)   | (-1.618)                    | (-1.324) | (-2.928)  |  |
| Fixed-effects                                  |            |               |            |                             |          |           |  |
| bank-county                                    | Yes        | Yes           | Yes        | Yes                         | Yes      | Yes       |  |
| czone-year                                     | Yes        | Yes           | Yes        | Yes                         | Yes      | Yes       |  |
| Fit statistics                                 |            |               |            |                             |          |           |  |
| Observations                                   | 391,077    | 391,077       | 391,077    | 423,647                     | 423,647  | 423,647   |  |
| $\mathbb{R}^2$                                 | 0.20141    | 0.20131       | 0.20171    | 0.24774                     | 0.24762  | 0.24801   |  |

### Identifying credit demand shocks

Build on Amiti & Weinstein (JPE 2018) and Hoffmann and Stewen (JEEA 2020) to decompose bank-county level mortgage growth.

Our theory suggests that demand shocks load more on more diversified banks.

$$\frac{L_t^{b,c} - L_{t-1}^{b,c}}{L_{t-1}^{b,c}} = \beta_t^b + \text{DIV}_t^b \gamma_t^c + \nu_t^{b,c}$$

 $eta^b_t$  : bank supply shock common to all counties c where bank b is active

 $\gamma_t^c$ : county-level demand shock common to all banks b in county c

## Solving for local credit demand shocks

Then there is a unique solution  $\{\beta_t^b\}_{b,t}$  and  $\{\gamma_t^c\}_{t,c}$  such that lending adds up across banks and counties:

$$\mathrm{MG}_t^b = \frac{L_t^b - L_{t-1}^b}{L_{t-1}^b} = \sum_c \phi_{t-1}^{b,c} \frac{L_t^{b,c} - L_{t-1}^{b,c}}{L_{t-1}^{b,c}} = \beta_t^b + \mathrm{DIV}_{t-1}^b \sum_c \phi_{t-1}^{b,c} \gamma_t^c$$

$$\mathrm{MG}_t^c = \frac{L_t^c - L_{t-1}^c}{L_{t-1}^c} = \sum_b \omega_{t-1}^{b,c} \frac{L_t^{b,c} - L_{t-1}^{b,c}}{L_{t-1}^{b,c}} = \overline{\mathrm{DIV}}_{t-1}^c \gamma_t^c + \sum_b \omega_{t-1}^{b,c} \beta_t^b$$

where

$$\overline{\text{div}}_{t-1}^c = \sum_b \omega_{t-1}^{b,c} \text{div}_{t-1}^b$$

### Aggregating up: cz-level regs again

We construct the commuter-zone level aggregate lending response to the credit demand shocks as

$$LR_t^z = \sum_{c \in \mathcal{C}(z)} \mu_{t-1}^c \overline{\mathrm{DIV}}_{t-1}^c \gamma_t^c$$

where  $\mu_{t-1}^c$  is the lending share of county c in the commuter zone.

We then run cz-level regs of the form

$$\Delta hpi_t^z = a \times \text{MG}_t^z + b \times \Delta \text{IE}_t^z + \text{CONTROLS}$$

in which we use LRZ as an instrument.

#### Constructing exogenous weights

— Banks' local market and portfolio shares are endogenous. We build on Hoffmann and Stewen (2020 JEEA) in constructing "as-if"-weights using the regulatory history of banks' host and origin states:

$$\omega_{t-1}^{b,c} = \frac{\text{Number of years bank } b \text{ can enter county } c}{\sum_{b \in \mathcal{B}_{t-1}(c)} \text{Number of years bank } b \text{ can enter county } c}$$

$$\phi_{t-1}^{b,c} = \frac{\text{Number of years bank } b \text{ can enter county } c}{\sum_{c \in \mathcal{C}_{t-1}(b)} \text{Number of years bank } b \text{ can enter county } c}$$

Use these de-iure weights in constructing the instrument LRZ

## CZ-level IV regressions for house prices and other outcomes

| Dependent Variables: | Mortgage Growth | HP growth  | manshare   | nt-share |
|----------------------|-----------------|------------|------------|----------|
| IV stages            | First           | Second     | Second     | Second   |
| Model:               | (1)             | (2)        | (8)        | (14)     |
| Variables            |                 |            |            |          |
| $\Delta IE_t^{CZ}$   | 0.0382          | -0.9557*** | -0.4188*** | 0.2308   |
|                      | (0.0172)        | (-4.185)   | (-2.869)   | (1.040)  |
| LR(de iure)          | 0.0010***       |            |            |          |
|                      | (3.201)         |            |            |          |
| Mortgage Growth      |                 | 0.0689***  | -0.0174**  | 0.0040   |
|                      |                 | (3.383)    | (-2.062)   | (0.3585) |
| Fixed-effects        |                 |            |            |          |
| czone                | Yes             | Yes        | Yes        | Yes      |
| year                 | Yes             | Yes        | Yes        | Yes      |
| Fit statistics       |                 |            |            |          |
| Observations         | 6,876           | 6,876      | 8,541      | 8,541    |
| $\mathbb{R}^2$       | 0.70359         | -0.13062   | 0.93307    | 0.95180  |
|                      |                 |            |            |          |

$$\Delta hpi_t^c = a \times LR_t^c + b \times \Delta IE_t^{\mathcal{CZ}(c)} + CONTROLS$$

#### Credit demand shock and import exposure

In our model, HH-credit demand shocks reflect shocks to transitory income. A positive transitory income shock lowers credit demand and vice versa.

We construct measures of transitory income as follows:

$$\Delta \mathit{inc}_{t+1}^{\mathit{c}} = \rho \times \Delta \mathit{inc}_{t}^{\mathit{c}} + \delta \Delta \mathit{IE}_{t+1}^{\mathit{c}} + \varepsilon_{t+1}^{\mathit{c}}$$

Then the (shock to the) BN-transitory component of income is

$$\Delta inc_{t+1}^T = -\left(\mathbb{E}_{t+1} - \mathbb{E}_t\right) \sum_{h=1}^{\infty} \Delta inc_{t+h}^c = -\frac{\delta \Delta \text{IE}_{t+1}}{1-\rho}$$

A regression of  $\gamma_t^c$  on  $\Delta inc_t^T$  reveals a strongly negative coefficient.

#### HH-level evidence: consumption responses

Our mechanisms rotates around the consumption smoothing (CS) of households. CS only possible if the shock is transitory (or perceived to be so ex ante)



Responses of consumption-income ratios to CTS in HH-data (CEX)

#### Conclusion

- Differences in financial (banking) market integration were important for how strongly the China trade shock affected local economies in the U.S. over the period 1991-2007.
- States that liberalized earlier had a higher presence of integrated banks which faciliated access to finance.
- HH access to finance seems key in explaining this effect.
- HH access to credit allows consumption smoothing and stabilizes local demand for non-tradeable goods.
- This keeps non-tradeable prices and wages higher and facilitates the sectoral reallocation.

## Lessons for European Monetary Union in a Post-COVID world

- CTS in the U.S: was a major reallocation shock
- ... so is COVID19, ... or the energy transition, ... !
- Our results show that HH-finance (and not only firm-finance) is important for such reallocations to work
- This bodes badly for EMU today: its banking union is still incomplete, retail banking markets remain nationally segmented
- The unfinished homework of Europe's policymakers remains: finish the banking union, get a common deposit insurance system, encourage cross-border consolidation in banking ...